Potensi Penggunaan Abu Terbang Cangkang Sawit sebagai Adsorben Logam Arsen dari Air Limbah Tambang

Rainiyati Rainiyati, Ahmad Riduan, Sarah Fiebrina Heraningsih

Abstract


Arsenic is a dangerous compound that accumulates in nature as a result of anthropogenic activities, one of which is gold mining. Effluent originating from the remaining mining is simply abandoned even though it contains Arsenic which is above the threshold set by the Government of the Republic of Indonesia. The purpose of this study was to analyze the ability of palm shell fly ash to remove arsenic in the residual gold mining effluent. The technology applied in this study was absorption by direct mixing followed by settling and filtering. The maximum arsenic removal efficiency achieved in this study was valued at 81.98%. The longer the contact time between the palm shell fly ash and the waste sample, the less the amount of Arsenic in the waste water will be. The results of this study indicate that the method of removing arsenic from wastewater using palm shell fly ash is very effective, easy to apply and cheap in terms of the cost required.


Keywords


palm shell fly ash; adsorption; gold mine effluent; agricultural waste

Full Text:

PDF

References


Ahmad, A. A., Hameed, B. H., & Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials, 141(1), 70–76. https://doi.org/10.1016/j.jhazmat.2006.06.094

Basu, A., Saha, D., Saha, R., Ghosh, T., & Saha, B. (2014). A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 40(2), 447–485. https://doi.org/10.1007/s11164-012-1000-4

Dias, A. C., & Fontes, M. P. F. (2020). Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Applied Clay Science, 191(January), 105615. https://doi.org/10.1016/j.clay.2020.105615

Elias, N., Chandren, S., Razak, F. I. A., Jamalis, J., Widodo, N., & Wahab, R. A. (2018). Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. International Journal of Biological Macromolecules, 114, 306–316. https://doi.org/10.1016/j.ijbiomac.2018.03.095

Huff, M. D., Kumar, S., & Lee, J. W. (2014). Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management, 146, 303–308. https://doi.org/10.1016/j.jenvman.2014.07.016

Indonesia, P. R. (2001). Baku Mutu Air. In PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 82 TAHUN 2001 TENTANG PENGELOLAAN KUALITAS AIR DAN PENGENDALIAN PENCEMARAN AIR.

Kumar, A., Kadirvelu, K., Mishra, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorptive removal of heavy metals from aqueous solution by treated sawdust ( Acacia arabica ). 150, 604–611. https://doi.org/10.1016/j.jhazmat.2007.05.030

Langsch, J. E., Costa, M., Moore, L., Morais, P., Bellezza, A., & Falcão, S. (2012). New technology for arsenic removal from mining effluents. Journal of Materials Research and Technology, 1(3), 178–181. https://doi.org/10.1016/S2238-7854(12)70030-3

Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Bonilla-Petriciolet, A., Pastore, C., & di Bitonto, L. (2019). Avocado seeds valorization as adsorbents of priority pollutants from water. Bulgarian Chemical Communications, 51, 124–127. https://doi.org/10.34049/bcc.51.B.009

Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7). https://doi.org/10.1007/s10661-019-7528-7

Rodríguez-Romero, J. A., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., de Haro-Del Rio, D. A., González-Rodríguez, L. M., Bonilla-Petriciolet, A., … Camacho-Aguilar, K. I. (2020). Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models. Journal of Environmental Chemical Engineering, 8(4), 103928. https://doi.org/10.1016/j.jece.2020.103928

Samad, K. A., Salleh, I. S. M., Zahari, M. A. K. M., & Yussof, H. W. (2019). Batch study on the removal of mercury (II) ion from industrial wastewater using activated palm oil fuel ash. Materials Today: Proceedings, 17, 1126–1132. https://doi.org/10.1016/j.matpr.2019.06.536

Shankar, S., Shanker, U., & Shikha. (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Scientific World Journal, 2014. https://doi.org/10.1155/2014/304524

Tai, Z. S., Othman, M. H. D., Hubadillah, S. K., Ismail, A. F., Rahman, M. A., Jaafar, J., … Abd Aziz, M. H. (2018). Low cost palm oil fuel ash based ceramic membranes for oily water separation. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 419–424. https://doi.org/10.11113/mjfas.v14n4.1218

Toledo, T. V., Bellato, C. R., Pessoa, K. D., & Ferreira, M. P. (2013). Remoção De Cromo (Vi) De Soluções Aquosas Utilizando O Compósito Magnético Calcinado Hidrotalcita- Óxido De Ferro: Estudo Cinético E De Equilíbrio Termodinâmico. Quimica Nova, 36(3), 419–425. https://doi.org/10.1590/S0100-40422013000300012

Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015). Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326–342. https://doi.org/10.1016/j.jenvman.2014.12.051

Wang, C., Liu, H., Zhang, Y., Zou, C., & Anthony, E. J. (2018). Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies. Progress in Energy and Combustion Science, 68, 1–28. https://doi.org/10.1016/j.pecs.2018.04.001

WHO. (2018). Arsenic. Retrieved from World Health Organization website: https://www.who.int/newsroom/%0Afact-sheets/detail/arsenic

Yanyan, L., Kurniawan, T. A., Zhu, M., Ouyang, T., Avtar, R., Dzarfan Othman, M. H., … Albadarin, A. B. (2018). Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan. Journal of Environmental Management, 226(August), 365–376. https://doi.org/10.1016/j.jenvman.2018.08.032

Yu, X., Wei, Y., Liu, C., Ma, J., Liu, H., Wei, S., … Luo, S. (2019). Chemosphere Ultrafast and deep removal of arsenic in high-concentration wastewater : A superior bulk adsorbent of porous Fe 2 O 3 nanocubes-impregnated graphene aerogel. Chemosphere, 222, 258–266. https://doi.org/10.1016/j.chemosphere.2019.01.130

Yusof, M. S. M., Othman, M. H. D., Wahab, R. A., Jumbri, K., Razak, F. I. A., Kurniawan, T. A., … Ismail, A. F. (2020). Arsenic adsorption mechanism on palm oil fuel ash (POFA) powder suspension. Journal of Hazardous Materials, 383(January 2019), 121214. https://doi.org/10.1016/j.jhazmat.2019.121214




DOI: http://dx.doi.org/10.33087/civronlit.v5i2.66

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Civronlit Unbari
Publisher: Fakultas Teknik Universitas Batanghari Jambi
Jl. Slamet Ryadi, Broni-Jambi, Kodepos: 36122, Phone: 0741-668280, email: civronlit.unbari@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.